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The dynamics of a classical test particle that evolves deterministically in a potential field, and
whose velocity is then randomized at regular intervals of time, is discussed. A limiting procedure
for this type of Brownian type of motion is given, which results in a motion like that described by
the Langevin equation. Exact analytical solutions for free and harmonically bound particles are
obtained. It is shown that if the time intervals between randomizing events coincide with the period
of harmonic oscillations, thermal equilibrium is not reached. For anharmonic background potentials
such a resonant behavior also shows up as a slowing down of the relaxation.
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I. INTRODUCTION

One of the ways to simulate numerically the dynam-
ics of a system in contact with a heat bath is given by
the so-called rescaling-velocity (RV) approach. A test
particle of mass M moves according to Newton’s law of
motion (without friction) in an external potential. Then
at regular time intervals 79 the particle is stopped and its
momentum is reset to a new random value chosen from a
Gaussian distribution with variance kgT M (T is the bath
temperature and kp is the Boltzmann constant). Such
an event will be called below a collision. It is important
to emphasize that the time scale 7o may be comparable
with the time scales of the background potential. Us-
ing the reasoning of detailed balance it was shown that
the test particle distribution will become the Boltzmann
distribution [1].

The algorithm, briefly outlined here, is sometimes also
called the stop-start mechanism. It is used to simulate
many particle systems. It finds its application in such di-
verse fields as lattice gauge theories [1], condensed matter
physics [2], chemical reaction rates [3,4], and chaos the-
ory [5]. On some occasions the time interval ¢ is chosen
from an exponential distribution. The RV approach is
an alternative both to the celebrated Monte Carlo (MC)
and to the Langevin approach. In the latter case both a
friction force and noise act on the test particle.

Recently Duane et al. [1], in the context of lattice field
theory, have proposed a hybrid Monte Carlo (HMC) ap-
proach in which every RV collision is followed by the
Metropolis accept-reject procedure. This algorithm re-
duces to the RV approach if the discretization errors are
of minor importance. The HMC algorithm has the ad-
vantage of being stable and not sensitive to the chosen
discretization time step At. This method was used by
Mehling et al. [6] for simulating condensed matter sys-
tems. Clearly the method suggested by Duane et al. is
a promising alternative to the MC, Langevin, and RV
approaches.

Such a broad application of the RV approach inspired
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us to use it for a broader class of stochastic dynamics
and study it possibly analytically. Owur first aim is to
find the RV dynamics for some simple cases and com-
pare it with the diffusion limit where much numerical
[7,8] and analytical [9] work is done. The conventional
RV approach resembles to an extent the Rayleigh piston
model [9,10] for equal masses of colliding particles. It is
treated here analytically for the case of a general ratio of
masses for some simple cases. The relaxation and fluctu-
ation patterns of this mechanism are compared with the
diffusion limit results. For example, it is found that the
relaxation in a harmonic field is not characterized by a
single transition from overdamped to underdamped mo-
tion but rather an infinite number of such transitions are
found. We have also found under what conditions the
RV approach will produce the same dynamical results as
described by the Langevin equation, thus establishing a
method to simulate the diffusion limit.

In the special case when the time 79 equals an integer
number of the harmonic oscillator period the RV algo-
rithm does not produce a relaxation of the test particle
to the thermal equilibrium. This is rather unexpected
since the detailed balance is not violated in this case.
This is a clear indication of a violation of the ergodic
hypothesis. Considering numerically an anharmonic os-
cillator an analogous effect is revealed. It shows up in
this case as a slowing down of the relaxation when 74 is
close to the thermally averaged period of the test particle
motion.

We have also checked the stability of the stochastic
paths when changing the computer discretization At. We
have found a sharp transition between states where tra-
jectories are stable and unstable. This transition occurs
when varying 7o from short (stable) to long (unstable)
periods.

The paper is organized as follows. First we present the
model and the mathematical tools we use for solving the
problem. We then solve the model for the special cases
of the free particle and the particle in a harmonic field.
After this the case of a general potential is considered
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and it is shown that the RV evolution of the system in
the diffusion limit is described by the Kramers equation.
The last section investigates numerically the motion of
the test particle in an anharmonic potential. It is shown
how the procedure leads to the equilibration of the test
particle and the case of the relaxation slowing down is
discussed. Then the stability of the random paths is dis-
cussed.

II. MODEL

This section considers a simple, one-dimensional model
for a system coupled with a bath (i.e., a random num-
ber generator). Let us assume that a test particle with
the mass M moves in the potential V(z). Its motion is
described by the Newton equation. The particle may in-
teract with a bath which is a one-dimensional gas of other
particles with the mass m. After each interval 7o the ref-
erence particle is elastically kicked by a gas particle with
a momentum p whose values are distributed according to
the Maxwell function with a variance kgTm. Such an
event causes a change of the momentum of the reference
J

Ci(l, h,T;z0,p0) = (exp{izkl + ipph})
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The second line of Eq. (1) explains the meaning of the
averaging procedure denoted by the brackets ().

The characteristic function (1) allows for the direct
calculation of various moments of the test particle coor-
dinate and momentum. The following two subsections
consider two cases when the characteristic function (1)
can be calculated exactly.

A. Free particle

The simplest case we are going to consider corresponds
to the free particle in the sense that there is no force
acting on it. However, it is not free from interaction
with the bath. We assume also that the collisions follow
one after another after a constant time 73. In this case
one can readily write the recursion

Pk 7'0
M

= 1Py + p2Pr+1,

Th4+1 = T +

(2)

+
Pr+t1

D;
mT

particle described by the equation

pt = p1p” + wap,
where
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Here — and + mark the values of the momentum just
before and after the collision. The coordinate of the ref-
erence particle does not change in the course of the col-
lision.

Now a sequence {p;} of k collision events is consid-
ered. The equation of motion and the elastic character
of the collisions in principle give the possibility to find
the coordinate z; and momentum p; of the test parti-
cle just after the kth collision. It is clear that these two
quantities depend on their initial values zo and po and
the particular choice of the sequence {p;} and they are
denoted as @y, ({5:}; @0, po) and pi ({5 }; o, Po)-

It is useful for further application to define the char-
acteristic function

i }eXP [izk ({P:}; To, Po)l + ipe ({B:}; zo, Po)h] . (1)

f

connecting the coordinate and the momentum of the test
particle after the kth and (k + 1)th collision. The map
(2) results in the equation

k—1k—1
j—ix
T = MZ#1P0+H2M;§M1 Pi»
(3)
k .
pé = uhpo + Z Ty
=1

Here without a loss of generality zo = 0. Now (3) can be
substituted into Eq. (1) for the characteristic function.
Carrying out all the Gaussian integrations of the bath
particle momenta p; one arrives at the equation

h2MT hlrou, T
Ck(lvh’T;IOaPO) = Clg exp <_ (1 - %k)) exp <_1_0lli—[1 - /‘l‘lf - + /l’lk 1])
— i
2,2(1 2% 2k 142
xexp(_ 75 (14 pa) A o + t;x]) (4)
2M(1 — pa) - 1—py 1-—p3
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for the characteristic function, in which the factor

ilToPo(l - [L’f)]

C? = exp |ihu* Py +
k p[ H1L0 M(l"#l)

(5)
absorbs all the dependence on the initial conditions.

The characteristic function (4) is defined only for dis-
crete values of time, k7o, but the calculation of this func-
tion between the kth and the (k + 1)th collision does not
present a serious problem since the Newton equation of
motion can be readily solved. It is easy to check that
the momentum of the test particle equilibrates to the
Maxwell distribution. The motion is unlimited; hence no
normalized distribution exists for the coordinate of the
test particle. In the next subsection the harmonic os-
cillator will be considered whose potential restricts the
motion of the test particle in a certain region, and this
problem does not take place.

Now various moments of the coordinate and momen-
tum are produced by differentiating the characteristic
function (4) over h or ! and taking the limit h,l — 0.
Several first moments are listed below:

(p) = poe™™", (6a)
T0Py 1+ ¢ —t
() = PP E oo, (6b)
(p?) = pae™ " + MT (1 — 6_27t) , (6¢)
(wp) = (2 p) + 0=

X [1 3 3 Ee_"’t + %—}——Ze—z‘ﬂ] , (6d)
(@?) = (2)? + (=3), (6e)

T8 e)? .
_(3~si£1+e) . (6f)

Here

e = m 1 1+e¢ (7)

m 7T To T e

Equation (6a) describes the deceleration of the test
particle with the initial momentum pg. It is clear that v
is the friction coefficient. Even so the relaxation of the
first moment is not continuous due to the free motion
between the collision events. The average squared mo-
mentum (6¢) relaxes to T'M with the relaxation constant
of 2. This kind of relaxation is identical to the relax-
ation with a continuous friction force and a fluctuating
force as described by the Langevin equation [9].

The mean square displacement (6e) contains two
terms. The first one depends essentially on the initial

momentum of the test particle and corresponds to the
displacement of the particle before its initial momentum
is completely damped. The second term (6f) describes
diffusion and increases linearly with time in the limit
t — o0o. The corresponding diffusion coefficient can be
easily found:

T()T

D= .
2Me

It is important to emphasize that the Einstein relation
does not generally hold for this system since D # T /yM.
This is connected with the fact that we consider finite
time intervals 7o between the collisions and finite ratio €
of the masses. As a result the relaxation time appears
to be comparable with this time interval. Therefore the
relaxation is not a continuous process but rather occurs
in a small number of steps. No wonder that the Einstein
relation assuming slow and continuous relaxation does
not hold under these conditions.

In order to recover the Einstein relation one has to
take the continuous limit 7¢ — 0. Taken as it is this
limit means increasing frequency of collisions and hence
increasing friction. In order to have a finite friction co-
efficient one must simultaneously take the limit € — 0
keeping the ratio v, = 2¢/7o finite. Then one can read-
ily see that

’Y")’YLZW,

i.e., the Einstein relation is now valid.
This limit produces the mean square displacement

- () ey

[2tyr — 3 + de™7EE — e 2EE] (8)

+ T
iM
which coincides with the well-known solution of the
Langevin equation with the friction coefficient yr. In
the same way all the moments listed above approach the
solutions of the Langevin equation. That is why we shall

call, in what follows, the above limit the Langevin (or
the diffusion) limit.

B. Harmonic oscillator

The stochastic motion of the particle in a harmonic
oscillator is considered in this subsection. This problem
can also be analyzed exactly due to the fact that the evo-
lution of the coordinate and the momentum is described
by the linear map

Tht1 cos(wTp) sin(wTo) T
pZ’+1 —py sin(wTo) 1 cos(wTo) Py
0
+ , )
H2Pk+1

where #, = Mwzg. The matrix in Eq. (9) does not de-
pend on the coordinate and momentum of the test par-
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ticle, which allows one to carry out a procedure similar
to that of the previous section.
This matrix is diagonalized and Eq. (9) becomes

Or+1 E_ 0 Ox —p§204Prt1
= +
Dpet1 0 E. O M20_Pr41
(10)
where
1
E, = 3 cos(wto) (1 + p1)
+4/cos?(wo) (1 + p1)? — 4pq (11)
and
Or = biTk — a4 Pk,
(12)

Py = —b_Zp + a_pi.

The coefficients in Eq. (12) make two eigenvectors of the
matrix in Eq. (9).

Now assuming initial values 6y and Yo and a given
sequence of k incident particle momenta {p;} with ¢ =
1,2,...,k Eq. (12) results in

k
0r = E¥ 09 — paa. Z B ki1,
=1
(13)
k
9 = EX 9 + poa_ Z ES YBr—i1.
=1

The characteristic function for the k collision process
Cr(l1, 12, T; 00,90) = (e™1On+iladk) (14)

is calculated by integrating over all the incident momenta
pi with the Maxwell distribution. The result can be rep-
resented in the form (for Tow # nm with integer n)

Ci(l1,12,T;00,90) = Co(80,90)Cr(l1,12, T;80,90), (15)

|

1
& = O BB E, - B

where
Co(l1,12;00,90) = exp(i[liEX 0o + 1, E* 9,])

contains the dependence on the initial conditions

- 1
Cr(l1,12,T) = exp {‘Eﬂngfk(ll,lz)} )

1- E%* 1— E32
fullaola) = (o) Tz + (@-b)* T g
1-(E_E,)*
—2a40 _lilg———. 16
vty =BT (16)

This result is considered first in the large time limit
which corresponds to & — oo when one expects that
the system must tend to equilibrium. Really the factor
Co(ly,12;0090) depending on the initial conditions tends
to unity in this limit, while the characteristic function
(16) at k — oo reads

1 (a+l1)? | (a_lp)?
Ci(l, 12, T) =eXP{—5/‘§mT 1-E2 1-E2
2a+a_l112
_ 2040 hiz || 17
1- E-EJ } ()

One can also carry out direct averaging using the equi-
librium Maxwell-Boltzmann distribution. The result co-
incides with (17). It is important to emphasize that the
two averaging procedures are different. The first one (17)
just follows all histories of the system and does not in-
volve any phase space averaging. The second procedure,
on the contrary, is phase space averaging of the test par-
ticle. If the ensemble average does not coincide with the
averaging over the incident particles’ momenta, it is a
clear indication that the ergodicity is broken. Such cases
will be considered in the next subsection.

The quantities of greatest interest are the first and
second moments of the coordinate and mechanical mo-
mentum (z), (p), (z2), and (p?), which can be found as
corresponding linear combinations of the moments (6),
(9), (6%), (¥2), and (69) obtained from the characteristic
function (16):

{wo[(Ei - 1B — (B2 —1)EXY

_%\/(1 - E?)(1- E%)(E* - Ei)},

1
T (U+E.E_ (B, - E-)

(p)

{Mwon_E+ \/(1 — E?)(1 - E2)(E* — E})

+po[E_(E2 —1)E* — E(E? - 1)Eﬁ]}, (18)
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1

2y _ 2y L
(&%) = (=) + sz{l_ [(1+E—E+)(E+ —E—)z[

(1-E%)1- E_E,)E*

+(1-E%)1-E_E,)E* -2(1-E?)(1— Ei)(E_E+)’“]] }

1

@) = ()* + TM{I - [(1 Y E_E{)(Ey — E_)?

[E2(1-E2)(1— E_E4)E*

+E2(1-E2)1-E_E.)E* -2E,E_(1-E*)(1— Ei)(E_E+)k]] } (19)

The absolute values of both eigenvalues (11) are
smaller than 1 and the time dependences of the moments
(18) and (19) are characterized by two parameters

e = —%m(Ei) (20)

appearing in the dependences
E% = exp(—ty+).

The decay parameters (20) have or do not have an
imaginary part depending on the sign of the quantity
A = cos?(w7)(1+ p1)2 — 4y in Eq. (11), which depends
on two parameters Tow and p;. The parameter p, varies
for different masses of the test and bath particles from
—1 to 1. A is negative only if

1 — | sinTow|

12pm >pp= 1.

cos? Tow

[ [ s B S S B B B |

FIG. 1. Revy4 versus 7o for different mass ratios €. To the
right of the first peak Revy, is determined (not including the
blips) by the damping coefficient of the free particle. Blips
appear when E is real. For wro = 2nn, Rey; = 0.

{
In this case

9 .
Y+ = —Elnﬂl + 140, (21)

1 1A
6 = — arctan —}.
To dp + A

Therefore we have here a type of underdamped behavior
when the system oscillates with the frequency 6, while
the amplitude of these oscillations decays with the char-
acteristic decay time —27o/lnpu;. One can readily see
(7) that this time is twice as large as the decay time ob-
tained in the previous subsection for the motion of a free
particle.

If 47 > p1 > 0 and both eigenvalues E. are real and
positive we deal with a type of overdamped behavior of
the system when no oscillations take place (see Figs. 1—-
3). This does not prevent the particle from exploring
the phase space, since the particle oscillates with the fre-
quency w between the collision events. In this case the

where

FIG. 2. Imy4 versus 7o for different mass ratios e. The

dashed line shows the dependence of — - which holds when

Ef <o0.
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Rey.

N
T

FIG. 3. Rey_ versus 79 for different mass ratios € for

lim,y,s0Rey- = oco. Blips appear when E_ is real except
for small values of 7o — 0 when the motion is overdamped.
For v_ we have Im[y_] = —Im[y4].

relaxation does not depend only on the damping coeffi-
cient of the free particle and the frequency of the oscil-
lator. It rather depends on three parameters which may
be, for example, chosen as (u1,w,7o).

When E or E_ < 0, a special behavior of the particle
is revealed. In this case the first moment of the nor-
mal coordinates, which may be computed directly from
(13) and given by (9x) = JoE*, (6x) = 0oE*, changes
sign after each collision. When this happens, the points
in the 6,9 plane where the collisions occur alternate be-
tween different sectors (quarters). Such a behavior does
not appear in the Langevin limit, when F1 may become
complex but are never real negative numbers due to the
continuous nature of the collisions in this limit.

This may happen when A > 0, cos(wTp) < 0, p1 > 0,
then E1 < 0. In this case one may consider directly
the coordinates z, p. As an example, when py = 0, (z)
changes sign after each collision. Hence collisions occur
once to the left and then to the right of the central point
of the oscillator.

Another interesting situation appears when pu; =
E(E_ < 0. The eigenvalues E4 are real but have differ-
ent signs, F; remaining positive while £_ becomes neg-
ative. This corresponds to a rather unusual case when
the mass of the bath particle is larger than the mass of
the test particle. This situation is certainly very far from
those considered by conventional theories of diffusive mo-
tion where the bath particles are usually assumed to be
very light. However, the solution presented in this sub-
section does not contain any restrictions on the ratio of
masses and heavy bath particles may also be considered.
The hopping from sector to sector seems to be a result of
light test particles being elastically reflected by the heavy
bath particles. Then each collision strongly changes the
further motion of the test particle.

Special cases

The first special case which is considered here is the
situation of equal masses M = m, which means that
p1 = 0. Now one of the eigenvalues becomes zero, E_ =
0, and the corresponding relaxation time 7_ = 1/v_ also
becomes zero. This is the case used in the standard RV
algorithm. Two colliding particles of equal masses simply
exchange their momenta (in one dimension). Therefore
the momentum distribution of the test particle coincides
with that of the bath particle just after the first collision
and, for example, (p)=0 for any value of k # 0.

This consideration being sufficient for the free particle
should be additionally elaborated, since now there is a
potential acting on the test particle. Its influence shows
up in the second relaxation time 74 = —7¢/ In[cos(Tow)]
which leads to the following equations for the moments
for k > 0:

(x)p = [:co + % tan('row)] cos® (Tow),

T 2k—2 22
W[l — cos?k (Tow)], (22)

(p) =0.

In the large time limit (¢ = k79 — o0) all the moments
relax to their equilibrium values with the finite relax-
ation time 7,. When 7 — 0 the particle is strongly
overdamped and the motion is practically frozen.

A really special case is achieved when Tow = nw, where
n is an integer number. Then F; =1 or E_ = —1 and
both Reyy = 0 and Rey— = 0 (see Figs. 1 and 3) meaning
that real equilibrium is not achieved at all. To see this
one can write the moments in the k£ — oo limit:

(@) = (2)i +

(p?) = MT,

(p) =0,

(p*) = TM.

[(z)| = o,
(23)
<.’1:2> = :Bg,

The system does not “forget” the initial coordinate, con-
trary to the initial momentum which does not appear in
Eq. (23).

This property can be understood rather easily. The
particle in the harmonic potential visits the point where
it has started its motion with a period independent of
the amplitude of the oscillations. The bath particles col-
lide with the test particle also periodically, and if these
two periods coincide, or their ratio is an integer num-
ber, then the periodic motion of the harmonic oscillator
is not disturbed. The collisions occur always when the
test particle visits the same point and they result only in
random fluctuations of the amplitude of the harmonic os-
cillations, while the phase is not randomized. When the
period of the oscillator is twice as long as the mean time
between collisions, the collisions will occur at two spe-
cial points, ¢ and —z¢, again leading to no relaxation.
In both these cases the energy of the harmonic oscillator
will always be larger than E,;, = Mw?z2/2 for any low
temperature.

To complete the discussion of this section we present



here results for the Langevin limit which is achieved if
€ — 0, 7o — 0 under the condition that v, = 2¢/79
remains finite. Then the two relaxation times are

1 1
= Mmooy = 3L Fy/7E —4w?).

T0—0

Taking this limit in Eqgs. (18) and (19) one arrives
at the results obtained by Chandrasekhar [11], who
treated a particle described by the Langevin equation
and bounded by a harmonic force field.

III. KRAMERS EQUATION

Two simple cases of a free particle and a harmonic
oscillator interacting with the bath as described above
allow for exact solutions for any values of the parame-
ters. Now we are going to address the more general case
of a particle moving in an arbitrary smooth potential
V(x). We are not able to find an exact solution of this
problem. However, there is a possibility to describe the
time evolution of the characteristic function by an equa-
tion which in the continuous limit (79, — 0) coincides
with the Kramers equation. The derivation is similar to
the Feynman derivation [12] of the Schrédinger equation
from the path integral formalism of quantum mechanics.

As usual we consider the time 79 between the collisions
as constant and also small enough to ensure the expan-
sion

+ - ~
Srr =Tt Dy = 2y (Lf}%ﬁzﬂz) .
(24)
Pry1 = pf + f(@R)T = papy + pabr + f(zk)T,

J

O{exp(izl + iph))i — 5

im Ck(lah7T1 7'0§170,P0) - Ck(l7 haTvT = 0;1’0’?0)
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where

Flaw) = 1=V (@)

T=Tp

is the force acting on the test particle between the kth
and (k + 1)th collisions. 7 < 7¢ is the time elapsing af-
ter the kth collision. Zx,; and pry; are the coordinate
and mechanical momentum of the test particle at time
kto + 7 < (k+1)70. Using our definition (1) of the char-
acteristic function we can calculate its evolution between
the kth and the (k+ 1)th collisions by means of the equa-
tion

Ck(lv h’v Ta 75 3«'071’0)
=2

dpy, ( Dy ) S
= [ -2 exp (- Ci(l, b, T; o, po).
/ s P | “g7 e ( Zo,Po)

Here

ék(l’ ha Ta -TO,PO)

o7l LTl .
= <exp (zuzpkﬁ +tipp g+ thf(zx)T

+ilzy, + ip hpy + ip,zhﬁk) > (25)

k—1

When 7 = 0, this is just the characteristic function just
after the kth collision event as defined by Eq. (1).

It is emphasized that generally our characteristic func-
tion is not differentiable at times t = k7o when the colli-
sions occur. However, considering its evolution between
the collisions one may define the time derivative of the
characteristic function as the limit

ot T0—0

(26)
To

It is clear from the discussion in the preceding section that the limit 79 — 0 can be taken only if simultaneously
the ratio of masses € — 0 for a constant parameter y;, = 2¢/7o. The latter plays the role of the friction coefficient.
Integrating over p in Eq. (25), for 7 = 79, and expanding over [ and h one gets

il

Cr(l,h, T, To; 0, p0) = (exp(ilzy + ihpy )) + M—(p; exp(ix + thpy ))7o + th(f(xr) exp(ilz + ihpg ))7o
—2ih(p;, exp(ilz + ihpy ))e — 2h*T M (exp(ilz + ihpy ))e + - --.

Here we use 3 — 1 — 2¢ and p2 — 4. Then substituting this expression into Eq. (26) one arrives at the following
equation for the time derivative of the characteristic function:

d(exp(izl + iph)):
ot

Keeping in mind that p;, = p; in the the limit ¢ — 0
the notation p = p; is used. The averages in (27) mean
integration over (k—1) — oo momenta of colliding parti-
cles. The first two terms on the right-hand side (RHS) of

il . .
= ih(f(a) exp(izl + iph)): + 71 (pexp(ial + iph)):
~T~yr Mh?{exp(izl + iph))s — ihyr(p exp(izl + iph)):.

(27)

[
Eq. (27) are due to the Taylor expansion in 74 and corre-
spond to the evolution of the characteristic function due
to the Newton deterministic motion of the test particle.
The last two terms appear when expanding with respect
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to € and correspond to the contribution of the collisions.

In order to understand the meaning of this equation
and its connection with the Kramers equation one has
to consider the Fourier transform of our characteristic
function

dl [ dhM . ,
Q(z,v,t) —/5‘/ oo exp(—ilz — ipz)

x (exp(ilz’ + ihp')):

= (§(z — z')d (v — v')). (28)

Keeping in mind that the averaging procedure in Eq. (28)
is defined by the path integral obtained from (1) in the
limit 79 — 0, can we say that the function Q(z,v,t) is
the probability density that at the time t the test par-
ticle wandering in the phase space visits the point with
the coordinate = and the velocity v = p/M? If this is the
case, one can replace the integration over all momenta
of incident particles with the more conventional integra-
tion over phase space, weighted by a probability density
W(z,v,t), for which transition probabilities determine
its evolution.

To check the equivalence of the two approaches, one
has to make the Fourier transformation of Eq. (27), which
results in

9Q(z,v,t) _|_ 9 O _ f(=)
at [ 5" 1 B (”7’“ M )
T 62
+ 1 Q@ v,0). (29)

The well-known Kramers equation (e.g., [9]), which is
usually written for the probability density W(z,v,t), is
immediately recognized. The initial conditions for both
probability densities coincide:

Po

Q(z,v,t =0) = W(z,v,t =0) = §(z — )6 (U _ M)

(30)

and their evolution is described by the same Kramers
equation. Therefore

Q(z,v,t) = W(z,v,1) (31)

at all times ¢.

It is worthwhile mentioning that the well-known prob-
lem of separation of friction force from fluctuating force
and the consequences for the nonlinear Langevin equa-
tion discussed by Macdonald [13] and van Kampen [9]
(Chap. 9) does not appear in our formulation. Our ap-
proach does not use such a separation at any step. As ex-
plained, our model for the nonlinear equation case turns
out to be described well by the Kramers equation. This
result is a direct consequence of our model rathe: than
due to an ambiguous addition of a Gaussian white noise
term to a nonlinear deterministic equation.

IV. NUMERICAL RESULTS

When the particle is situated in a nonlinear potential
field an exact solution to the problem is rarely found.
The subject of a stochastic motion in such fields is of
great current interest [14]. Numerical solutions [15] are
a common way to treat such problems. Here we use the
collision process to simulate the Brownian type of motion.

The deterministic evolution of the particle during the
time intervals 7¢ is obtained by solving numerically the
Newton equations of motion. This was done using the
leapfrog method with a time step satisfying 0.002 < At <
0.008 <« 79. A double well potential (DWP) and an
anharmonic oscillator are considered. The force field is
given by f(z) = —cz3+bz withc =1, b = 1 for the DWP
and with ¢ =1, b = —1 for the anharmonic oscillator.

First we have checked that the algorithm produces
samples which agree well with the Maxwell-Boltzmann
distribution. This was done for different mass ratios,
temperatures, time intervals 7o, and integration steps At
by computing, for example, the time averaged energy of
the test particle, and comparing this quantity with the
energy computed directly from the Maxwell-Boltzmann
distribution. The result gives good agreement between
the two averaging procedures. We have also produced
histograms which show that the algorithm is an excellent
tool to produce the Maxwell-Boltzmann distribution. Be-
ing sure that the algorithm produces samples at thermal
equilibrium, we may turn to dynamical features of the
algorithm.

A. Dynamical properties

As shown above no relaxation to the thermal equilib-
rium occurs for the test particle in the harmonic po-
tential whose frequency w coincides with the period of
kicks, wTo = 27. An anharmonic potential is now consid-
ered. The corresponding averaged (temperature depen-
dent) frequency of the test particle oscillations is

(@H(T)) = M <3L(’”)>T (32)

Ox?

Here ()7 denotes averaging over the Boltzmann distri-
bution.

This equation determines the characteristic oscillation
period as (t) = 27/4/(w?). The dynamics of the test par-
ticle close to thermal equilibrium will be studied assum-
ing that the system is also close to the condition 1 = (t).
It is done by computing the correlation function

(z(9)z(: + 7))

(@)

£0) = ; (33)

and time
o0
tecor = To Zg(J)a
3=0

where 7 and j are indices of the collision events. The
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FIG. 4. Correlation functions are plotted for different time
intervals 7o between collisions. Here we consider the anhar-
monic oscillator; the parameters of simulation are specified in
the text.

averaging in (33) is carried out both over the time (using
5000 event samples) and over 500 realizations. It is of
interest to compute the dependence of these functions on
temperature and on the time interval 7.

The slow relaxation is illustrated for the example of
the force field f(z) = —z® — z, other parameters being
T =0.2, e =1, and At = 0.005. Figure 4 shows how the
correlation function varies with 7¢ so that the slow relax-
ation shows up when choosing 7o close to the averaged
oscillation period. One can also observe strong oscilla-
tions of the correlation function when wr = 7. These are
due to sampling once to the left and once to the right of
the central point of the oscillator. Figure 5 exhibits this
phenomenon most distinctly by presenting the correla-
tion time as a function of 7o for fixed temperature. The
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FIG. 5. Correlation time for the anharmonic oscillator,
shown for different time intervals 7o between collisions.
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FIG. 6. Correlation functions are plotted for different time
intervals 7o between collisions. Here we consider the DWP
configuration; the parameters of simulation are specified in
the text.

peak of this curve is situated very close to the estimate
given by Eq. (32).

We have carried out these simulations also for the
DWP configuration. The chosen temperature was T = 1,
the mass ratio € = 1, and time step At = 0.002. Figure
6 shows the correlation function for various 7. Simi-
larly to the anharmonic potential case, one observes the
oscillations of the correlation function for 7o/(t) ~ 0.5.
For the DWP case the peak in the correlation time (see
Fig. 7) is shifted. Hence the rule (32) can give only a
rough estimate for the location of the resonance. Due
to the strong anharmonicity of the DWP, the correlation
function in the DWP decreases more rapidly in compari-
son to the weakly anharmonic potential. Figure 7 shows
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FIG. 7. Correlation time for the DWP configuration.
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also an increase in the correlation time for small values
of 7o when the motion is overdamped.

As a final remark we shall note that the results pre-
sented here are not sensitive to small changes in the time
step At. Exactly the same simulations were carried out
for the time step At = 0.008. The results for the corre-
lation time varied only slightly, the maximal magnitude
of these variation being 2%. We shall discuss further the
dependence of the algorithm on the time step At in the
next subsection.

B. Stability of paths

It is well known that a trajectory of a particle in a non-
linear potential field may be sensitive to small perturba-
tions. Here the stability of the dynamics is considered
with respect to variations of the integration step At. For
this, two particles driven by an identical sequence of ran-
dom collisions are studied. The initial conditions for the
two particles are identical and so is the time step 79. It
is clear that the departure of the trajectories of the two
particles is due to small differences in the deterministic
evolution. To measure this the normalized mean square
distance {r%,) = ((X1 — X2)2)/{z?)r is defined.

It is found that a quantitative transition occurs for
such dynamics which is sensitive to small changes of the
time between collisions 7¢9. This means that the value
of (r?,) may change by ten orders of magnitude when
only slightly changing 7. Figure 8 exhibits the mean
squared distance for three values of 7. The discretization
time steps were chosen as At; = 0.008 and At, = 0.002,
though other choices produce similar results. The aver-
aging was carried out over 250 realizations. The figure
shows the relative stability of the simulations when 79 is
small.

We have also found the stationary value of (r?,). This
was done by averaging over both 250 realizations and 600
time steps. The dependence on 7¢ is shown in Fig. 9.
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FIG. 8. The mean square distance as a function of time.
Here V(z) = 2~ — 2 e=T=1.0.
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FIG. 9. Mean square distance as a function of 79. The
parameters are given in Fig. 8.

This kind of transition is similar to the one found by
Fahy and Hamann (FH) [5]. They found that when two
particles are driven by the same sequence of random col-
lisions their trajectories may become identical. The tran-
sition is from a chaotic behavior (trajectories do not be-
come identical) for long intervals between collision events
to a nonchaotic behavior (trajectories become identical)
for short intervals. However, the perturbation imposed
on the two paths, in our simulations, is not due to differ-
ent initial conditions given to the two particles. Rather,
it is due to the difference in the discretization step chosen
for the two trajectories. Hence in our simulation, even if
the two particles occupy exactly the same point in phase
space, their paths will separate.

To understand this, consider the two particles initially
situated at the same point in phase space. Due to the
small difference in the discretization step the particle tra-
jectories will depart (even for small values of 79). After
the two particles have separated slightly, we show why

they tend to contract for small values of 79. Expanding
the coordinate in 7o one gets
T (TO) - mz(TO) — _ i aZV (34)
z1(0) — z2(0) 2M 8z2°

It is clear that such an expansion is valid only when the
dynamics are approximately described by Newton’s equa-
tions (i.e., assuming At; are small enough). As pointed
out by FH the second term in (34) is for bounded sys-
tems, on the average positive. Hence the particles will
effectively attract each other.

V. CONCLUSIONS

A description of the motion of a particle coupled to a
“heat bath” is presented. This stochastic motion serves
to generate samples obeying Maxwell-Boltzmann statis-
tics. The particle statistical properties are determined
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by an integration scheme (path integral) over all incident
particles. This procedure is similar to the Wiener rep-
resentation of the random walk problem [16]. There the
inertial effects of the particle’s motion are not considered.
The path integral method suggested here is particularly
useful far from the diffusion limit. In this case the motion
is described neither by a differential (i.e., Fokker-Planck)
equation nor by an integro-differential equation.

Considering the limit of both the time between collision
and the mass ratio (bath to test particle) tending to zero,
we arrive at the standard results derived from the phe-
nomenological Langevin equation. Several cases of finite
time between collision and ratio of masses are considered,
when the description does not necessarily coincide with
that of the Langevin equation.

This allows us also to study whether ergodicity holds
for the particular systems and find particular situations
when it is broken down. This happens when wry = n«w
where w is the frequency of a harmonic background po-
tential. For anharmonic potentials the frequency of mo-
tion is a function of the amplitude; hence one expects er-
godicity to hold always. Even so, choosing 7o close to an
averaged period (now depending on the amplitude and
hence the temperature) of the anharmonic background
potential may lead to slowing down of the relaxation.

This and the fact that choosing 79 too small leads to a
highly overdamped motion restrict the choice of 7. We
therefore may conclude that the choice of 79 should be
made with care. A possible way to avoid such complica-
tions is to choose 7y from an exponential distribution.

We have also found a sharp transition for the sensitiv-
ity of the paths to small changes of the integration step
At. For small values of 79 the paths are not sensitive to
this parameter, while beyond a critical value of 7o the
trajectories are not stable. This means that the path
for large 7o depends on the integration step, even if it
is very small. In this case, as for many other numerical
procedures, one may extract numerical results only after
checking that the result is insensitive to this integration
step.
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